Application of electrostatic Langmuir probe to atmospheric arc plasmas producing nanostructures
A. Shashurin, J. Li, T. Zhuang, M. Keidar, I. Belis
The temporal evolution of a high pressure He arc producing nanotubes was considered and the Langmuir probe technique was applied for plasma parameter measurements. Two modes of arc were observed: cathodic arc where discharge is supported by erosion of cathode material and anodic arc which is supported by ablation of the anode packed with carbon and metallic catalysts in which carbon nanotubes are synthesized. Voltage-current (V-I) characteristics of single probes were measured and unusually low ratio of saturation current on positively biased probe to that on negatively biased of about 1–4 was observed. This effect was explained by increase of measured current at the negatively biased probe above the level of ion saturation current due to secondary electron emission from the probe surface. Since utilization of standard collisionless approach to determine plasma parameters from the measured V-I characteristic is not correct, the electron saturation current was used to estimate the plasma density.