The Granger-Causal Effects of Canady Helios Cold Plasma on the Inhibition of Breast Cancer Cell Proliferation

Annisa Elbedour ¹, Xiaoqian Cheng ¹, Saravana R.K. Murthy ¹, Taisen Zhuang ¹, Lawan Ly ¹, Olivia Jones ¹, Giacomo Basadonna ², Michael Keidar ³, and Jerome Canady ^{1,3,4*}

1 Jerome Canady Research Institute for Advanced Biological and Technological Sciences, Takoma Park, MD 20912, USA 2. School of Medicine, University of Massachusetts, Worcester, MA 01605, USA

Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA Department of Surgery, Holy Cross Hospital, Silver Spring, MD 20910, USA

Email: drjcanady@jcri-abts.com

Introduction

Breast Cancer Classification

Breast cancer is a result of random mutations that allow breast cells to grow and proliferate without the tight restrictions imposed on them during the cell cycle. These mutations affect several of the cells' homeostatic parameters, including their cellular metabolism, proliferation rate, and the defenses they establish to circumvent cell cycle arrest or controlled death.

 Table 1. Classification of Breast Cancer Cell Lines and Their Characteristics.

Classification	Immuno- profile	Ki-67 Level	Example Cell Line
Luminal A	ER+, PR+/-, HER2-	Low	MCF-7
Luminal B	ER+, PR+/-, HER2+	High	BT-474
HER2	ER·, PR·, HER2+	High	SK-BR-3
Triple-negative ER·, PR·, HER2·		Low	MDA-MB-231

Cold Atmospheric Plasma

With its recent applications in oncology, regenerative medicine, and immunotherapy, CAP can be used for a myriad of different clinical treatments. When using CAP specifically for the treatment of tumors, it is known to elicit an oxidative response within malignant cancer cells, inducing cell cycle arrest and apoptosis.

Canady Helios Cold Plasma (CHCP) was developed at JCRI-ABTS (U.S. Patent No. 9.999,462-19, June 2018) and has been demonstrated to effectively eliminate various types of solid tumor including breast carcinoma. A phase I FDA investigational device exemption trial by CHCP to study the safety of the system was completed in April 2021.

Figure 1. Schematic image of Canady Helios Cold Plasma setup for the treatment of breast cancer cells.

Granger Causality Model

Granger causality tests whether a variable, the potential "cause," is helpful for forecasting, or predicting, the behavior of another variable, the potential "effect." In a Granger model, each variable is regressed on all variables, including itself, at previous time points in order to reveal the temporal dynamics of a system across time. The outputted coefficients of regression (COR) are then analyzed to verify the usefulness of one variable to forecast another [1]. According to Granger causality, if X "Granger-causes" Y, then past values of X should contain information that helps predict Y above and beyond the information contained in past values of Y alone [2].

Figure 2. The Basis Behind Causal Testing.

In this study, Granger modeling was used to compare the individual effects of intracellular ROS, caspase activity, Ki-67 expression, and G1 phase activity on cell proliferation and cell death after 3- and 5-minute CHCP treatment for four different breast cancer cell-lines. These relationships were quantified through Granger causality's mathematical formulation using R statistical software.

Granger-Causal Effects

3-minute CHCP treatment

 Table 2. P values and coefficients of linear regression for all

 cell proliferation models for cells treated for 3 minutes (* p

 < 0.05). Only HER2* cell lines BT-474 and SK-BR-3</td>

 displayed ROS Grance-causality.

Cell line	Result	Cause: ROS	Cause: Caspase	Cause: Ki-67	Cause: G1
BT-	P value	1.2x10 ^{-6*}	0.0956	0.0206*	0.0003*
474	COR	0.0029	0.0752	0.0364	0.0062
MCF -7	P value	0.2315	0.0009*	< 2.2x10- 16*	1.4x10-13*
	COR	0.0061	2.3118	1.2369	0.047372
MDA -MB- 231	P value	0.1305	6.271x10- 8*	0.2152	0.5003
	COR	0.0005	0.2057	0.0941	0.0025
SK-	P value	P value 0.0006* 8.94x10 ⁻ 10*	0.0111*	-	
BR-3	COR	3.2x10 ⁻⁴	0.0462	0.0615	-

Table 4. P values and coefficients of linear regression for all <u>cell death</u> models for cells treated for <u>3 minutes</u> (* p < 0.05). The results show that MDA-MB-231 model detected no causality for any variable.

Cell line	Result	Cause: ROS	Cause: Ki-67	Cause: G1
BT-	P value	0.1823	0.08641*	0.03197*
474	COR	0.001565	0.03311	0.003271
MCF -7	P value	0.001521*	0.0001978*	0.000331*
	COR	0.0012771	0.017391	0.0018635
MDA	P value	0.09577	0.2085	0.5509
-MB- 231	COR	0.0004847	0.09009	0.002259
SK-	P value	5.16x10 ^{-7*}	0.000365*	-
BR-3	COR	2.48x10 ⁻⁴	0.25092	-

treatment.

 Table 3. P values and coefficients of linear regression for all cell proliferation models for cells treated for 5 minutes. All variables were significant when treated for a longer period of time. The COR for the SK-BR-3 ROS model is significantly smaller than that of BT-474.

 Cell
 regression

 Cell
 regression

 Cell
 regression

5-minute CHCP treatment

	Cell line	Result	Cause: ROS	Cause: Caspase	Cause: Ki-67	Cause: G1
	BT-	P value	1.8x10 ^{-9*}	1.1x10 ⁻ 10+	0.0061*	0.00121*
	474	COR	0.0009	0.0214	0.0707	0.0121
	MCF- 7	P value	0.0161*	4.2x10 ^{.7*}	0.008*	1.19x10 ^{-12*}
		COR	0.0012	0.1075	0.0623	0.0284
	MDA- MB- 231	P value	4.5x10 ^{-6*}	1.2x10 ^{-8*}	< 2.2x10 ^{-16*}	< 2.2x10 ^{-16*}
		COR	0.0007	0.0885	0.6924	0.0221
	SK- BR-3	P value	0.0486*	3.3x10- 12*	1.8x10-8*	-
		COR	8.3x10 ⁻⁵	0.0511	0.0879	-

 Table 5. P values and coefficients of linear regression for all

 cell death
 models for cells treated for 5 minutes.

 Ki-67
 showed causality for MDA-MB-231 under these conditions.

 However, G1 remained insignificant.
 However, G1 remained insignificant.

=					
Cell line	Result	Cause: ROS	Cause: Ki-67	Cause: G1	
BT-	P value	0.01091*	4.726x10 ^{-7*}	0.4513	
474	COR	0.00223	0.26380	0.005350	
MCF -7	P value	0.2384	0.1001	0.01122*	
	COR	0.0007537	0.06361	0.023061	
MDA -MB- 231	P value	0.01123*	0.01146*	0.05247	
	COR	0.0005037	0.23959	0.009367	
SK- BR-3	P value	5.98x10 ^{-5*}	0.006272*		
	COR	2.46x10 ⁻⁴	0.55293		

Conclusions

- Quantifying CHCP's relationship to intracellular ROS, caspase activity, Ki-67 expression, and cell cycle activity in the G1
 phase elucidates the impact cold plasma has on disturbing different malignant cellular processes.
- Receptor status for each cell line greatly impacted the causal influence each variable had on cell proliferation and cell death.
 Computational modeling aids in understanding the systematic series of micro-cellular operations that occur with cancer
 - References

1 Granger, C.W.J., Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 1969. 37:424–438 2 Siggiridou, E., Koutlis, C., Tsimpiris, A., & Kugiumtzis, D., Evaluation of Granger Causality Measures for Constructing Networks from Multivariate Time Series. Entropy 2019. 21(11),

